SUMMARY OF TERMS (KNOWLEDGE)

- Nuclear fission The splitting of the nucleus of a heavy atom, such as uranium-235, into two smaller nuclei, accompanied by the release of much energy.
- Chain reaction A self-sustaining reaction in which the products of one reaction event stimulate further reaction events.
- Critical mass The minimum mass of fissionable material in a reactor or nuclear bomb that will sustain a chain reaction.
- Breeder reactor A fission reactor that is designed to breed more fissionable fuel than is put into it by converting nonfissionable isotopes to fissionable isotopes.
- Nuclear fusion The combination of light atomic nuclei to form heavier nuclei, often with the release of much energy.
- Thermonuclear fusion Nuclear fusion produced by high temperature.

READING CHECK QUESTIONS (COMPREHENSION)

34.1 Nuclear Fission

- 1. Why doesn't a chain reaction normally occur in uranium
- 2. Why is a chain reaction more likely to occur in a big piece of uranium than in a small piece?
- 3. What is meant by the idea of a critical mass?
- 4. Which will leak more neutrons: two separate pieces of uranium or the same pieces stuck together?
- 5. What were the two methods used to separate U-235 from U-238 in the Manhattan Project during World War II?

34.2 Nuclear Fission Reactors

- 6. What are the three possible fates of neutrons in uranium metal?
- 7. What are the four main components of a fission reactor?
- 8. What components are the safeguards to prevent a reactor from generating energy out of control?
- 9. What isotope is produced when U-238 absorbs a neutron?
- 10. What isotope is produced when U-239 emits a beta particle?
- 11. What isotope is produced when Np-239 emits a beta particle?
- 12. What do U-235 and Pu-239 have in common?

34.3 The Breeder Reactor

- 13. What is the effect of placing small amounts of fissionable isotopes with large amounts of U-238?
- 14. Name two isotopes that undergo nuclear fission.
- 15. What element reacts in a breeder reactor to breed nuclear fuel?

34.4 Fission Power

- 16. In what way is a nuclear reactor similar to a conventional fossil-fuel plant?
- 17. Cite three main advantages of fission power. Cite four main drawbacks.

34.5 Mass-Energy Equivalence

- 18. What celebrated equation shows the equivalence of mass and energy?
- 19. Is work required to pull a nucleon out of an atomic nucleus? Does the nucleon, once outside, have more energy than it did when it was inside the nucleus? In what form is this energy?
- 20. Which ions of like charge and equal speed are least deflected in a mass spectrometer?
- 21. What is the basic difference between the graphs in Figure 34.15 and Figure 34.16?
- 22. In which element is the mass per nucleon greatest? Least?
- 23. How does the mass per nucleon in uranium compare with the mass per nucleon in its fission fragments?
- 24. What becomes of the "lost" mass per nucleon in fission and fusion reactions?
- 25. If the graph in Figure 34.16 is seen as an energy valley, what can be said about the energy of nuclear transformations that progress toward iron?

34.6 Nuclear Fusion

- 26. When a pair of hydrogen nuclei are fused to create helium, how does the mass of the resulting helium nucleus compare with the sum of the nuclear masses before fusion?
- 27. For helium to release energy, should it be fissioned or fused?

34.7 Controlling Fusion

- 28. What isotopes of hydrogen fuse best at "moderate" temperatures?
- 29. Which isotope of hydrogen—deuterium or tritium—is abundant and which is scarce?
- 30. What kind of nuclear power is responsible for sunshine?