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SECTION 1

OBJECTIVES

Describe the purpose of the
scientific method.

Distinguish between 
qualitative and quantitative
observations.

Describe the differences
between hypotheses, theories,
and models.

Scientific Method

S ometimes progress in science comes about through accidental dis-
coveries. Most scientific advances, however, result from carefully
planned investigations. The process researchers use to carry out their
investigations is often called the scientific method. The scientific
method is a logical approach to solving problems by observing and col-
lecting data, formulating hypotheses, testing hypotheses, and formulating
theories that are supported by data.

Observing and Collecting Data

Observing is the use of the senses to obtain information. Observation
often involves making measurements and collecting data. The data may
be descriptive (qualitative) or numerical (quantitative) in nature.
Numerical information, such as the fact that a sample of copper ore has
a mass of 25.7 grams, is quantitative. Non-numerical information, such as
the fact that the sky is blue, is qualitative.

Experimenting involves carrying out a procedure under controlled
conditions to make observations and collect data. To learn more about
matter, chemists study systems. A system is a specific portion of matter
in a given region of space that has been selected for study during an
experiment or observation. When you observe a reaction in a test tube,
the test tube and its contents form a system.

FIGURE  1 These students have
designed an experiment to deter-
mine how to get the largest volume
of popped corn from a fixed number 
of kernels. They think that the 
volume is likely to increase as the
moisture in the kernels increases.
Their experiment will involve 
soaking some kernels in water and
observing whether the volume of the
popped corn is greater than that of
corn popped from kernels that have
not been soaked.

Developed and maintained by the
National Science Teachers Association

For a variety of links related to this
chapter, go to www.scilinks.org

Topic: Scientific Methods
SciLinks code: HC61359

Developed and maintained by the
National Science Teachers Association



Formulating Hypotheses

As scientists examine and compare the data from their own experiments,
they attempt to find relationships and patterns—in other words, they
make generalizations based on the data. Generalizations are statements
that apply to a range of information. To make generalizations, data are
sometimes organized in tables and analyzed using statistics or other
mathematical techniques, often with the aid of graphs and a computer.

Scientists use generalizations about the data to formulate a 
hypothesis, or testable statement. The hypothesis serves as a basis for
making predictions and for carrying out further experiments.
Hypotheses are often drafted as “if-then” statements.The “then” part of
the hypothesis is a prediction that is the basis for testing by experiment.
Figure 2 shows data collected to test a hypothesis.

Testing Hypotheses

Testing a hypothesis requires experimentation that provides data to
support or refute a hypothesis or theory. During testing, the experi-
mental conditions that remain constant are called controls, and any con-
dition that changes is called a variable. Any change observed is usually
due to the effects of the variable. If testing reveals that the predictions
were not correct, the hypothesis on which the predictions were based
must be discarded or modified.
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FIGURE  2 A graph of data 
can show relationships between 
two variables. In this case the graph
shows data collected during an
experiment to determine the effect
of phosphorus fertilizer compounds
on plant growth. The following is one
possible hypothesis: If phosphorus
stimulates corn-plant growth, then
corn plants treated with a soluble
phosphorus compound should grow
faster, under the same conditions,
than corn plants that are not treated.



Theorizing

When the data from experiments show that the predictions of the hypoth-
esis are successful, scientists typically try to explain the phenomena they
are studying by constructing a model. A model in science is more than a
physical object; it is often an explanation of how phenomena occur and
how data or events are related. Models may be visual, verbal, or mathe-
matical. One important model in chemistry is the atomic model of mat-
ter, which states that matter is composed of tiny particles called atoms.

If a model successfully explains many phenomena, it may become part
of a theory. The atomic model is a part of the atomic theory, which you
will study in Chapter 3. A theory is a broad generalization that explains a
body of facts or phenomena. Theories are considered successful if they
can predict the results of many new experiments. Examples of the impor-
tant theories you will study in chemistry are kinetic-molecular theory and
collision theory. Figure 3 shows where theory fits in the scheme of the sci-
entific method.
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OBSERVING
• collecting data
• measuring
• experimenting
• communicating

FORMULATING
HYPOTHESES

• organizing and
analyzing data

• classifying
• inferring
• predicting
• communicating

TESTING
• predicting
• experimenting
• communicating
• collecting data
• measuring

THEORIZING
• constructing 

models
• predicting
• communicating

PUBLISH 
RESULTS

• communicating

Data do not support 
hypothesis—revise 
or reject hypothesis

Results confirmed by other scientists— 
validate theory

STAGES IN THE SCIENTIFIC METHOD

FIGURE  3 The scientific method is not a single, fixed process. Scientists may
repeat steps many times before there is sufficient evidence to formulate a theo-
ry. You can see that each stage represents a number of different activities.

1. What is the scientific method?

2. Which of the following are quantitative?
a. the liquid floats on water
b. the metal is malleable
c. the liquid has a temperature of 55.6°C

3. How do hypotheses and theories differ?

4. How are models related to theories and
hypotheses?

Critical Thinking

5. INTERPRETING CONCEPTS Suppose you had to 
test how well two types of soap work. Describe
your experiment by using the terms control and
variable.

SECTION REVIEW
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Breaking Up Is Easy To Do
It may seem obvious that chemistry is
important in the making of materials,
but chemistry is also vital to the study
of how materials break. Everyday
items have to be made to withstand
various types of force and pressure or
they cannot be used. For example, sci-
entists and engineers work to ensure
that highway bridges do not collapse.

When excessive force is applied to
an object, the material that the object
is made of will break. The object
breaks because the force creates
stress on the bonds between the
atoms of the material and causes the
bonds to break. This creates micro-
scopic cracks in the material. When a
material breaks, it is said to have
undergone failure. Materials typically
break in one of two ways: ductile fail-

ure and brittle failure. Both types of
failure start with microscopic cracks
in the material. However, the way a
material eventually breaks depends
how its atoms are organized.

Shattering glass undergoes brittle
failure. Glass shatters when the bonds
between the two layers of atoms that
are along the initial crack break. This
breakage causes the layers to pull
apart, which separates the material
into pieces. This type of failure is com-
mon in materials that do not have a
very orderly arrangement of atoms.

When a car bumper crumples, duc-
tile failure happens. This type of fail-
ure tends to happen in materials
such as metals, that have a regular,
ordered arrangement of atoms. This
arrangement of atoms is known as a
crystal structure. Ductile failure hap-
pens when the bonds in the material
break across many layers of atoms
that are not in the same plane as the
original crack. Rather than splitting
apart, the layers slip past each other
into new positions. The atoms form
new chemical bonds, between them
and the material stays in one piece;
only the shape has changed.

In addition to the type of material
influencing breakage, the quality of
the material also influences break-
age. All objects contain microscopic
defects, such as bubbles in plastic
pieces. A material will tend to under-
go failure at its defect sites first.
Careful fabrication procedures can
minimize, but not completely elimi-
nate, defects in materials.

Even though materials are designed
to withstand a certain amount of
force, the normal wear and tear that
materials experience over their life-
times creates defects in the material.
This process is referred to as fatigue.

If fatigue were to go undetected, the
microscopic cracks that form could
then undergo brittle or ductile failure.
It would be catastrophic if the materi-
als in certain products, such as air-
plane parts, failed. To avoid such a
failure, people monitor materials that
are exposed to constant stress for
signs of fatigue. The defects in the
metal parts of airplanes can be detect-
ed with nondestructive techniques,
such as electromagnetic analysis.

1. Can you name some ways in
which metal or plastic parts
might obtain defects caused by
chemical reactions?

2. Does a ceramic dinner plate
undergo brittle or ductile failure
when it is dropped and breaks? 

Questions

microscopic defect

brittle failure

ductile failure

A microscopic crack in a material can

develop into brittle or ductile failure.
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SECTION 2

OBJECTIVES

Distinguish between a 
quantity, a unit, and a 
measurement standard.

Name and use SI units for
length, mass, time, volume,
and density.

Distinguish between mass
and weight.

Perform density calculations.

Transform a statement of
equality into a conversion
factor.

Units of Measurement

M easurements are quantitative information. A measurement is more
than just a number, even in everyday life. Suppose a chef were to write
a recipe listing quantities such as 1 salt, 3 sugar, and 2 flour. The cooks
could not use the recipe without more information. They would need to
know whether the number 3 represented teaspoons, tablespoons, cups,
ounces, grams, or some other unit for sugar.

Measurements represent quantities. A quantity is something that has
magnitude, size, or amount. A quantity is not the same as a measure-
ment. For example, the quantity represented by a teaspoon is volume.
The teaspoon is a unit of measurement, while volume is a quantity. A
teaspoon is a measurement standard in this country. Units of measure-
ment compare what is to be measured with a previously defined size.
Nearly every measurement is a number plus a unit. The choice of unit
depends on the quantity being measured.

Many centuries ago, people sometimes marked off distances in the
number of foot lengths it took to cover the distance. But this system was
unsatisfactory because the number of foot lengths used to express a dis-
tance varied with the size of the measurer’s foot. Once there was agree-
ment on a standard for foot length, confusion as to the real length was
eliminated. It no longer mattered who made the measurement, as long
as the standard measuring unit was correctly applied.

SI Measurement

Scientists all over the world have agreed on a single measurement sys-
tem called Le Système International d’Unités, abbreviated SI. This sys-
tem was adopted in 1960 by the General Conference on Weights and
Measures. SI now has seven base units, and most other units are derived
from these seven. Some non-SI units are still commonly used by
chemists and are also used in this book.

SI units are defined in terms of standards of measurement. The stan-
dards are objects or natural phenomena that are of constant value, easy
to preserve and reproduce, and practical in size. International organiza-
tions monitor the defining process. In the United States, the National
Institute of Standards and Technology (NIST) plays the main role in
maintaining standards and setting style conventions. For example, num-
bers are written in a form that is agreed upon internationally. The num-
ber seventy-five thousand is written 75 000, not 75,000, because the
comma is used in other countries to represent a decimal point.



SI Base Units

The seven SI base units and their standard abbreviated symbols are 
listed in Table 1. All the other SI units can be derived from the funda-
mental units.

Prefixes added to the names of SI base units are used to represent
quantities that are larger or smaller than the base units. Table 2 lists SI
prefixes using units of length as examples. For example, the prefix centi-,
abbreviated c, represents an exponential factor of 10−2, which equals
1/100. Thus, 1 centimeter, 1 cm, equals 0.01 m, or 1/100 of a meter.

Mass
As you learned in Chapter 1, mass is a measure of the quantity of 
matter. The SI standard unit for mass is the kilogram. The standard for
mass defined in Table 1 is used to calibrate balances all over the world.
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Quantity Unit
Quantity symbol Unit name abbreviation Defined standard

Length l meter m the length of the path traveled by light 
in a vacuum during a time interval of
1/299 792 458 of a second

Mass m kilogram kg the unit of mass equal to the mass of the
international prototype of the kilogram

Time t second s the duration of 9 192 631 770 periods of the
radiation corresponding to the transition
between the two hyperfine levels of the
ground state of the cesium-133 atom

Temperature T kelvin K the fraction 1/273.16 of the thermodynamic
temperature of the triple point of water

n mole mol the amount of substance of a system which
contains as many elementary entities as there
are atoms in 0.012 kilogram of carbon-12

I ampere A the constant current which, if maintained in
two straight parallel conductors of infinite
length, of negligible circular cross section, and
placed 1 meter apart in vacuum, would
produce between these conductors a force
equal to 2 × 10−7 newton per meter of length

Iv candela cd the luminous intensity, in a given direction, of
a source that emits monochromatic radiation
of frequency 540 × 1012 hertz and that has a
radiant intensity in that direction of 1/683
watt per steradian

Luminous
intensity

Electric
current

Amount of
substance

TABLE 1 SI Base Units
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The mass of a typical textbook is about 1 kg. The gram, g, which is
1/1000 of a kilogram, is more useful for measuring masses of small
objects, such as flasks and beakers. For even smaller objects, such as tiny
quantities of chemicals, the milligram, mg, is often used. One milligram
is 1/1000 of a gram, or 1/1 000 000 of a kilogram.

Mass is often confused with weight because people often express the
weight of an object in grams. Mass is determined by comparing the mass
of an object with a set of standard masses that are part of the balance.
Weight is a measure of the gravitational pull on matter. Unlike weight,
mass does not depend on gravity. Mass is measured on instruments such
as a balance, and weight is typically measured on a spring scale. Taking
weight measurements involves reading the amount that an object pulls
down on a spring. As the force of Earth’s gravity on an object increas-
es, the object’s weight increases. The weight of an object on the moon is
about one-sixth of its weight on Earth.

Length
The SI standard unit for length is the meter. A distance of 1 m is about
the width of an average doorway. To express longer distances, the kilo-
meter, km, is used. One kilometer equals 1000 m. Road signs in the
United States sometimes show distances in kilometers as well as miles.
The kilometer is the unit used to express highway distances in most
other countries of the world.To express shorter distances, the centimeter
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Unit Exponential
Prefix abbreviation factor Meaning Example

tera T 1012 1 000 000 000 000 1 terameter (Tm) = 1 × 1012 m

giga G 109 1 000 000 000 1 gigameter (Gm) = 1 × 109 m

mega M 106 1 000 000 1 megameter (Mm) = 1 × 106 m

kilo k 103 1000 1 kilometer (km) = 1000 m

hecto h 102 100 1 hectometer (hm) = 100 m

deka da 101 10 1 dekameter (dam) = 10 m

100 1 1 meter (m)

deci d 10−1 1/10 1 decimeter (dm) = 0.1 m

centi c 10−2 1/100 1 centimeter (cm) = 0.01 m

milli m 10−3 1/1000 1 millimeter (mm) = 0.001 m

micro μ 10−6 1/1 000 000 1 micrometer (μm) = 1 × 10−6 m

nano n 10−9 1/1 000 000 000 1 nanometer (nm) = 1 × 10−9 m

pico p 10−12 1/1 000 000 000 000 1 picometer (pm) = 1 × 10−12 m

femto f 10−15 1/1 000 000 000 000 000 1 femtometer (fm) = 1 × 10−15 m

atto a 10−18 1/1 000 000 000 000 000 000 1 attometer (am) = 1 × 10−18 m

TABLE 2 SI Prefixes

Some Handy
Comparisons of Units
To become comfortable with units in
the SI system, try relating some com-
mon measurements to your experience.

A meter stick is a little longer than a
yardstick. A millimeter is about the
diameter of a paper clip wire, and a
centimeter is a little more than the
width of a paper clip.

One gram is about the mass of 
a paper clip. A kilogram is about
2.2 pounds (think of two pounds plus
one stick of butter). And there are
about five milliliters in a teaspoon.



is often used. From Table 2, you can see that one centimeter equals
1/100 of a meter. The width of this book is just over 20 cm.

Derived SI Units

Many SI units are combinations of the quantities shown in Table 1.
Combinations of SI base units form derived units. Some derived units
are shown in Table 3.

Derived units are produced by multiplying or dividing standard
units. For example, area, a derived unit, is length times width. If both
length and width are expressed in meters, the area unit equals meters
times meters, or square meters, abbreviated m2. The last column of
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Quantity Unit
Quantity symbol Unit abbreviation Derivation

Area A square meter m2 length × width

Volume V cubic meter m3 length × width × height

Density D kilograms per cubic meter

Molar mass M kilograms per mole

Molar volume Vm cubic meters per mole

Energy E joule J force × length

volume

amount of substance

m3

mol

mass

amount of substance

kg

mol

mass

volume

kg

m3

TABLE 3 Derived SI Units

FIGURE  4 The meter is the 
SI unit of length, but the centimeter
is often used to measure smaller 
distances. What is the length in cm of
the rectangular piece of aluminum
foil shown?



Table 3 shows the combination of fundamental units
used to obtain derived units.

Some combination units are given their own names.
For example, pressure expressed in base units is the
following.

kg/m•s2

The name pascal, Pa, is given to this combination.
You will learn more about pressure in Chapter 11.
Prefixes can also be added to express derived units.
Area can be expressed in cm2, square centimeters,
or mm2, square millimeters.

Volume
Volume is the amount of space occupied by an object. The derived SI unit
of volume is cubic meters, m3. One cubic meter is equal to the volume
of a cube whose edges are 1 m long. Such a large unit is inconvenient for
expressing the volume of materials in a chemistry laboratory. Instead, a
smaller unit, the cubic centimeter, cm3, is often used. There are 100 centi-
meters in a meter, so a cubic meter contains 1 000 000 cm3.

1 m3 × �
10

1
0
m
cm
� × �

10
1
0
m
cm
� × �

10
1
0
m
cm
� = 1 000 000 cm3

When chemists measure the volumes of liquids and gases, they often
use a non-SI unit called the liter. The liter is equivalent to one cubic
decimeter.Thus, a liter, L, is also equivalent to 1000 cm3.Another non-SI
unit, the milliliter, mL, is used for smaller volumes.There are 1000 mL in
1 L. Because there are also 1000 cm3 in a liter, the two units—milliliter
and cubic centimeter—are interchangeable.

M E A S U R E M E N T S  A N D  C A L C U L A T I O N S 37

1L

1000 cm31 cm3 15 mL
15 mL

1L

FIGURE  5 The speed that registers on a speedome-
ter represents distance traveled per hour and is
expressed in the derived units kilometers per hour or
miles per hour.

FIGURE  6 The relationships
between various volumes are shown
here. One liter contains 1000 mL of
liquid, and 1 mL is equivalent to 
1 cm3. A small perfume bottle con-
tains about 15 mL of liquid. The 
volumetric flask (far left) and gradu-
ated cylinder (far right) are used for
measuring liquid volumes in the lab.



Density
An object made of cork feels lighter than a lead object of the same size.
What you are actually comparing in such cases is how massive objects
are compared with their size. This property is called density. Density is
the ratio of mass to volume, or mass divided by volume. Mathematically,
the relationship for density can be written in the following way.

density = or D =

The quantity m is mass, V is volume, and D is density.
The SI unit for density is derived from the base units for mass and vol-

ume—the kilogram and the cubic meter, respectively—and can be
expressed as kilograms per cubic meter, kg/m3. This unit is inconvenient-
ly large for the density measurements you will make in the laboratory.
You will often see density expressed in grams per cubic centimeter, g/cm3,
or grams per milliliter, g/mL. The densities of gases are generally report-
ed either in kilograms per cubic meter, kg/m3, or in grams per liter, g/L.

Density is a characteristic physical property of a substance. It does not
depend on the size of the sample because as the sample’s mass increases,
its volume increases proportionately, and the ratio of mass to volume is
constant. Therefore, density can be used as one property to help identify
a substance. Table 4 shows the densities of some common materials. As
you can see, cork has a density of only 0.24 g/cm3, which is less than the
density of liquid water. Because cork is less dense than water, it floats
on water. Lead, on the other hand, has a density of 11.35 g/cm3.The den-
sity of lead is greater than that of water, so lead sinks in water.

Note that Table 4 specifies the temperatures at which the densities
were measured. That is because density varies with temperature. Most
objects expand as temperature increases, thereby increasing in volume.
Because density is mass divided by volume, density usually decreases
with increasing temperature.

m

V

mass

volume
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FIGURE  7 Density is the ratio of
mass to volume. Both water and
copper shot float on mercury
because mercury is more dense.

Density at Density at
Solids 20°C (g/cm3) Liquids 20°C (g/mL)

cork 0.24* gasoline 0.67*

butter 0.86 ethyl alcohol 0.791

ice 0.92† kerosene 0.82

sucrose 1.59 turpentine 0.87

bone 1.85* water 0.998

diamond 3.26* sea water 1.025**

copper 8.92 milk 1.031*

lead 11.35 mercury 13.6
† measured at 0°C ** measured at 15°C
* typical density

TABLE 4 Densities of Some Familiar Materials
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Materials
• balance
• 100 mL graduated cylinder
• 40 pennies dated before

1982
• 40 pennies dated after 1982
• water

Procedure

1. Using the balance, determine
the mass of the 40 pennies
minted prior to 1982. Repeat
this measurement two more
times. Average the results of the
three trials to determine the
average mass of the pennies.

2. Repeat step 1 with the 40 pen-
nies minted after 1982.

3. Pour about 50 mL of water into
the 100 mL graduated cylinder.
Record the exact volume of the
water. Add the 40 pennies
minted before 1982. CAUTION:
Add the pennies carefully so
that no water is splashed out of
the cylinder. Record the exact
volume of the water and pen-
nies. Repeat this process two
more times. Determine the vol-
ume of the pennies for each
trial. Average the results of
those trials to determine the
average volume of the pennies.

4. Repeat step 3 with the 40 pen-
nies minted after 1982.

5. Review your data for any large
differences between trials that
could increase the error of 
your results. Repeat those 
measurements.

6. Use the average volume and
average mass to calculate the
average density for each group
of pennies.

7. Compare the calculated aver-
age densities with the density
of the copper listed in Table 4.

Discussion

1. Why is it best to use the results
of three trials rather than a sin-
gle trial for determining the
density?

2. How did the densities of the
two groups of pennies com-
pare? How do you account for
any difference?

3. Use the results of this investiga-
tion to formulate a hypothesis
about the composition of the
two groups of pennies. How
could you test your hypothesis?

Density of Pennies

Wear safety goggles and an apron.

Given: mass (m) = 8.4 g
volume (V) = 3.1 cm3

Unknown: density (D)

density = = = 2.7 g/cm38.4 g

3.1 cm3

mass

volume

SOLUTION

SAMPLE PROBLEM  A

A sample of aluminum metal has a mass of 8.4 g. The volume of the sample is 3.1 cm3. Calculate the den-
sity of aluminum.



Conversion Factors

A conversion factor is a ratio derived from the equality between two dif-
ferent units that can be used to convert from one unit to the other. For
example, suppose you want to know how many quarters there are in a
certain number of dollars. To figure out the answer, you need to know
how quarters and dollars are related. There are four quarters per dollar
and one dollar for every four quarters. Those facts can be expressed as
ratios in four conversion factors.

= 1 = 1 = 1 = 1

Notice that each conversion factor equals 1. That is because the two
quantities divided in any conversion factor are equivalent to each
other—as in this case, where 4 quarters equal 1 dollar. Because conver-
sion factors are equal to 1, they can be multiplied by other factors in
equations without changing the validity of the equations. You can use
conversion factors to solve problems through dimensional analysis.
Dimensional analysis is a mathematical technique that allows you to use
units to solve problems involving measurements. When you want to use
a conversion factor to change a unit in a problem, you can set up the
problem in the following way.

quantity sought = quantity given × conversion factor

For example, to determine the number of quarters in 12 dollars, you
would carry out the unit conversion that allows you to change from dol-
lars to quarters.

number of quarters = 12 dollars × conversion factor

Next you would have to decide which conversion factor gives you an
answer in the desired unit. In this case, you have dollars and you want
quarters. To eliminate dollars, you must divide the quantity by dollars.
Therefore, the conversion factor in this case must have dollars in the
denominator and quarters in the numerator. That factor is 4 quarters/
1 dollar. Thus, you would set up the calculation as follows.

1 quarter

0.25 dollar

0.25 dollar

1 quarter

1 dollar

4 quarters

4 quarters

1 dollar
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Go to go.hrw.com for
more practice problems
that ask you to calculate
density.

Keyword: HC6MEAX

1. What is the density of a block of marble that occupies 310. cm3

and has a mass of 853 g?

2. Diamond has a density of 3.26 g/cm3. What is the mass of a dia-
mond that has a volume of 0.351 cm3?

3. What is the volume of a sample of liquid mercury that has a mass
of 76.2 g, given that the density of mercury is 13.6 g/mL?

Answers in Appendix EPRACTICE



? quarters = 12 dollars × conversion factor

= 12 dollars × = 48 quarters

Notice that the dollars have divided out, leaving an answer in the
desired unit—quarters.

Suppose you had guessed wrong and used 1 dollar/4 quarters when
choosing which of the two conversion factors to use. You would have an
answer with entirely inappropriate units.

? quarters = 12 dollars × =

It is always best to begin with an idea of the units you will need in your
final answer. When working through the Sample Problems, keep track
of the units needed for the unknown quantity. Check your final answer
against what you’ve written as the unknown quantity.

Deriving Conversion Factors
You can derive conversion factors if you know the relationship between
the unit you have and the unit you want. For example, from the fact that
deci- means “1/10,” you know that there is 1/10 of a meter per decimeter
and that each meter must have 10 decimeters. Thus, from the equality
(1 m = 10 dm), you can write the following conversion factors relating
meters and decimeters. In this book, when there is no digit shown in the
denominator, you can assume the value is 1.

and and 

The following sample problem illustrates an example of deriving
conversion factors to make a unit conversion.

10 dm

m

0.1 m

dm

1 m

10 dm

3 dollars2

quarter

1 dollar

4 quarters

4 quarters

1 dollar
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Given: 5.712 g
Unknown: mass in mg and kg

The expression that relates grams to milligrams is

1 g = 1000 mg

The possible conversion factors that can be written from this expression are

and 
1 g

1000 mg

1000 mg

g

SOLUTION

SAMPLE PROBLEM  B

Express a mass of 5.712 grams in milligrams and in kilograms.
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Go to go.hrw.com for
more practice problems
that ask you to perform
unit conversions.

Keyword: HC6MEAX

To derive an answer in mg, you’ll need to multiply 5.712 g by 1000 mg/g.

5.712 g × = 5712 mg

This answer makes sense because milligrams is a smaller unit than grams and, therefore,
there should be more of them.

The kilogram problem is solved similarly.

1 kg = 1000 g

Conversion factors representing this expression are

and 

To derive an answer in kg, you’ll need to multiply 5.712 g by 1 kg/1000 g.

5.712 g × = 0.005712 kg

The answer makes sense because kilograms is a larger unit than grams and, therefore, there
should be fewer of them.

1 kg

1000 g

1000 g

kg

1 kg

1000 g

1000 mg

g

1. Express a length of 16.45 m in centimeters and in kilometers.

2. Express a mass of 0.014 mg in grams.

Answers in Appendix EPRACTICE

1. Why are standards needed for measured quantities?

2. Label each of the following measurements by the
quantity each represents. For instance, a measure-
ment of 10.6 kg/m3 represents density.

a. 5.0 g/mL f. 325 ms

b. 37 s g. 500 m2

c. 47 J h. 30.23 mL

d. 39.56 g i. 2.7 mg

e. 25.3 cm3 j. 0.005 L

3. Complete the following conversions.
a. 10.5 g = ____ kg

b. 1.57 km = ____ m

c. 3.54 μg = ____ g

d. 3.5 mol = ____ μmol

e. 1.2 L = ____ mL

f. 358 cm3 = ____ m3

g. 548.6 mL = ____ cm3

4. Write conversion factors for each equality.
a. 1 m3 = 1 000 000 cm3

b. 1 in. = 2.54 cm

c. 1 μg = 0.000 001 g

d. 1 Mm = 1 000 000 m

5. a. What is the density of an 84.7 g sample of an
unknown substance if the sample occupies 
49.6 cm3?

b. What volume would be occupied by 7.75 g of
this same substance?

Critical Thinking

6. INFERRING CONCLUSIONS A student converts
grams to milligrams by multiplying by the 
conversion factor ⎯100

1
0
g
mg

⎯. Is the student perform-
ing this calculation correctly?

SECTION REVIEW
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Classical Ideas About Matter
The Greeks were among the many
ancient cultures that sought to
understand the nature of matter. One
group of Greek philosophers, called
the atomists, believed that matter
could be broken down into pieces of
a minute size. These pieces, called
atoms or atomos which means “indi-
visible,” possessed intrinsic, unchang-
ing qualities. Another group of
Greeks believed that matter could be
divided an infinite number of times
and could be changed from one type
of matter into another.

Between 500 and 300 BCE, the
Greek philosophers Leucippus and
Democritus formulated the ideas
that the atomists held. Leucippus
and Democritus believed that all
atoms were essentially the same but
that the properties of all substances
arose from the unique characteristics
of their atoms. For example, solids,
such as most metals, were thought
to have uneven, jagged atoms.
Because the atoms were rough, they
could stick together and form solids.
Similarly, water was thought to have
atoms with smooth surfaces, which
would allow the atoms to flow past
one another. Though atomists did
not have the same ideas about mat-
ter that we have today, they did
believe that atoms were constantly
in motion, even in objects that
appeared to be solid.

Some Greek philosophers who
studied matter between 700 and
300 BCE described matter in a way
that differed from the way atomists
described it. They attempted to iden-
tify and describe a fundamental sub-
stance from which all other matter
was formed. Thales of Miletus
(640–546 BCE) was among the first
to suggest the existence of a basic
element. He chose water, which
exists as liquid, ice, and steam. He
interpreted water’s changeability to
mean that water could transform into
any other substance. Other philoso-
phers suggested that the basic ele-
ment was air or fire. Empedokles
(ca. 490–ca. 430 BCE) focused on four
elements: earth, air, fire, and water.
He thought that these elements com-
bined in various proportions to make
all known matter.

Aristotle (384–322 BCE), a student
of Plato, elaborated on the earlier
ideas about elements. He argued
that in addition to the four elements
that make up all matter, there were
four basic properties: hot, cold, wet,
and dry. In Aristotle’s view, the four
elements could each have two of the
basic properties. For example, water
was wet and cold, while air was wet
and hot. He thought that one ele-
ment could change into another ele-
ment if its properties were changed.

For more than 2,000 years,
Aristotle’s classical ideas dominated
scientific thought. His ideas were
based on philosophical arguments,
not on the the scientific process. It
was not until the 1700s that the exis-
tence of atoms was shown experi-
mentally and that the incredible
intuition of the atomists was realized.

1. In Aristotle’s system of elements,
fire opposes water. Why do 
you think that he chose this 
relationship?

2. Use the ideas of the atomists to
describe the atoms of the physi-
cal phases of matter—solid,
liquid, and gas.

Questions
FIRE

WATER

AIR EARTH

Cold

Dry

Wet

Hot

This diagram shows Aristotle’s belief

about the relationship between the

basic elements and properties.
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SECTION 3 Using Scientific
Measurements

I f you have ever measured something several times, you know that
the results can vary. In science, for a reported measurement to be use-
ful, there must be some indication of its reliability or uncertainty.

Accuracy and Precision

The terms accuracy and precision mean the same thing to most people.
However, in science their meanings are quite distinct. Accuracy refers to
the closeness of measurements to the correct or accepted value of the
quantity measured. Precision refers to the closeness of a set of measure-
ments of the same quantity made in the same way.Thus, measured values
that are accurate are close to the accepted value. Measured values that
are precise are close to one another but not necessarily close to the
accepted value.

Figure 8 can help you visualize the difference between precision and
accuracy. A set of darts thrown separately at a dartboard may land 
in various positions, relative to the bull’s-eye and to one another. The

OBJECTIVES

Distinguish between accuracy
and precision.

Determine the number of 
significant figures in
measurements.

Perform mathematical opera-
tions involving significant
figures.

Convert measurements into
scientific notation.

Distinguish between inversely
and directly proportional
relationships.

(a) (b) (c) (d)

Darts within small area
= High precision

Area centered on bull’s-eye
= High accuracy

Darts within small area
= High precision

Area far from bull’s-eye
= Low accuracy

Darts within large area
= Low precision

Area far from bull’s-eye
= Low accuracy

Darts within large area
= Low precision

Area centered around bull’s-eye
= High accuracy (on average)

FIGURE  8 The sizes and locations
of the areas covered by thrown darts
illustrate the difference between
precision and accuracy.



closer the darts land to the bull’s-eye, the more accurately they were
thrown. The closer they land to one another, the more precisely they
were thrown. Thus, the set of results shown in Figure 8a is both accurate
and precise because the darts are close to the bull’s-eye and close to
each other. In Figure 8b, the set of results is inaccurate but precise
because the darts are far from the bull’s-eye but close to each other. In
Figure 8c, the set of results is both inaccurate and imprecise because the
darts are far from the bull’s-eye and far from each other. Notice also
that the darts are not evenly distributed around the bull’s-eye, so the
set, even considered on average, is inaccurate. In Figure 8d, the set on
average is accurate compared with the third case, but it is imprecise.
That is because the darts are distributed evenly around the bull’s-eye
but are far from each other.

Percentage Error
The accuracy of an individual value or of an average experimental value
can be compared quantitatively with the correct or accepted value by
calculating the percentage error. Percentage error is calculated by sub-
tracting the accepted value from the experimental value, dividing the dif-
ference by the accepted value, and then multiplying by 100.

Percentage error = × 100

Percentage error has a negative value if the accepted value is greater
than the experimental value. It has a positive value if the accepted value
is less than the experimental value. The following sample problem illus-
trates the concept of percentage error.

Valueexperimental − Valueaccepted

Valueaccepted
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Go to go.hrw.com for
more practice problems
that ask you to calculate
percentage error.

Keyword: HC6MEAX

Percentage error = × 100

= × 100 = 7.7%
1.40 g/mL − 1.30 g/mL

1.30 g/mL

Valueexperimental − Valueaccepted

Valueaccepted

SOLUTION

SAMPLE PROBLEM  C

1. What is the percentage error for a mass measurement of 17.7 g,
given that the correct value is 21.2 g?

2. A volume is measured experimentally as 4.26 mL. What is the 
percentage error, given that the correct value is 4.15 mL?

Answers in Appendix E

A student measures the mass and volume of a substance and calculates its density as 1.40 g/mL. The 
correct, or accepted, value of the density is 1.30 g/mL. What is the percentage error of the student’s
measurement?

PRACTICE

Chemistry in Action
Go to go.hrw.com for a full-length
article on using measurements to
determine a car’s pollution rating.

Keyword: HC6MEAX



Error in Measurement
Some error or uncertainty always exists in
any measurement. The skill of the measurer
places limits on the reliability of results. The
conditions of measurement also affect the
outcome. The measuring instruments them-
selves place limitations on precision. Some
balances can be read more precisely than
others. The same is true of rulers, graduated
cylinders, and other measuring devices.

When you use a properly calibrated mea-
suring device, you can be almost certain of a
particular number of digits in a reading. For

example, you can tell that the nail in Figure 9 is definitely between 6.3
and 6.4 cm long. Looking more closely, you can see that the value is
halfway between 6.3 and 6.4 cm. However, it is hard to tell whether the
value should be read as 6.35 cm or 6.36 cm.The hundredths place is thus
somewhat uncertain. Simply leaving it out would be misleading because
you do have some indication of the value’s likely range. Therefore, you
would estimate the value to the final questionable digit, perhaps report-
ing the length of the nail as 6.36 cm. You might include a plus-or-minus
value to express the range, for example, 6.36 cm ± 0.01 cm.

Significant Figures

In science, measured values are reported in terms of significant figures.
Significant figures in a measurement consist of all the digits known with
certainty plus one final digit, which is somewhat uncertain or is estimated.
For example, in the reported nail length of 6.36 cm discussed above, the
last digit, 6, is uncertain. All the digits, including the uncertain one, are
significant, however. All contain information and are included in the
reported value. Thus, the term significant does not mean certain. In any
correctly reported measured value, the final digit is significant but not
certain. Insignificant digits are never reported. As a chemistry student,
you will need to use and recognize significant figures when you work
with measured quantities and report your results, and when you evalu-
ate measurements reported by others.

Determining the Number of Significant Figures
When you look at a measured quantity, you need to determine which
digits are significant. That process is very easy if the number has no
zeros because all the digits shown are significant. For example, in a num-
ber reported as 3.95, all three digits are significant. The significance of
zeros in a number depends on their location, however. You need to
learn and follow several rules involving zeros. After you have studied
the rules in Table 5, use them to express the answers in the sample prob-
lem that follows.
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FIGURE  9 What value should be
recorded for the length of this nail?

Developed and maintained by the
National Science Teachers Association

For a variety of links related to this
chapter, go to www.scilinks.org

Topic: Significant Figures
SciLinks code: HC61392

Developed and maintained by the
National Science Teachers Association
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Rule Examples

1. Zeros appearing between nonzero digits a. 40.7 L has three significant figures.
are significant. b. 87 009 km has five significant figures.

2. Zeros appearing in front of all nonzero digits a. 0.095 897 m has five significant figures.
are not significant. b. 0.0009 kg has one significant figure.

3. Zeros at the end of a number and to the a. 85.00 g has four significant figures.
right of a decimal point are significant. b. 9.000 000 000 mm has 10 significant figures.

4. Zeros at the end of a number but to the a. 2000 m may contain from one to four 
left of a decimal point may or may not be significant figures, depending on how 
significant. If a zero has not been measured many zeros are placeholders. For measurements 
or estimated but is just a placeholder, it is not given in this text, assume that 2000 m has one 
significant. A decimal point placed after zeros significant figure.
indicates that they are significant. b. 2000. m contains four significant figures,

indicated by the presence of the decimal point.

TABLE 5 Rules for Determining Significant Zeros

Determine the number of significant figures in each measurement using the rules listed 
in Table 5.

a. 28.6 g
There are no zeros, so all three digits are significant.

b. 3440. cm
By rule 4, the zero is significant because it is immediately followed by a decimal point;
there are 4 significant figures.

c. 910 m
By rule 4, the zero is not significant; there are 2 significant figures.

d. 0.046 04 L
By rule 2, the first two zeros are not significant; by rule 1, the third zero is significant;
there are 4 significant figures.

e. 0.006 700 0 kg
By rule 2, the first three zeros are not significant; by rule 3, the last three zeros are 
significant; there are 5 significant figures.

SOLUTION

SAMPLE PROBLEM  D

How many significant figures are in each of the following measurements?
a. 28.6 g
b. 3440. cm
c. 910 m
d. 0.046 04 L
e. 0.006 700 0 kg

For more help, go to the Math Tutor at the end of Chapter 1.



Rounding
When you perform calculations involving measurements, you need to
know how to handle significant figures. This is especially true when you
are using a calculator to carry out mathematical operations.The answers
given on a calculator can be derived results with more digits than are
justified by the measurements.

Suppose you used a calculator to divide a measured value of 154 g by a
measured value of 327 mL. Each of these values has three significant fig-
ures. The calculator would show a numerical answer of 0.470948012. The
answer contains digits not justified by the measurements used to calculate
it. Such an answer has to be rounded off to make its degree of certainty
match that in the original measurements.The answer should be 0.471 g/mL.

The rules for rounding are shown in Table 6. The extent of rounding
required in a given case depends on whether the numbers are being
added, subtracted, multiplied, or divided.
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1. Determine the number of significant figures in each of the
following.
a. 804.05 g
b. 0.014 403 0 km
c. 1002 m
d. 400 mL
e. 30 000. cm
f. 0.000 625 000 kg

2. Suppose the value “seven thousand centimeters” is reported to
you. How should the number be expressed if it is intended to con-
tain the following?
a. 1 significant figure
b. 4 significant figures
c. 6 significant figures

Answers in Appendix EPRACTICE

Go to go.hrw.com for
more practice problems
that ask you to
determine significant
figures.

Keyword: HC6MEAX

If the digit following the last digit Example (rounded to three
to be retained is: then the last digit should: significant figures)

greater than 5 be increased by 1 42.68 g ⎯→ 42.7 g

less than 5 stay the same 17.32 m ⎯→ 17.3 m

5, followed by nonzero digit(s) be increased by 1 2.7851 cm ⎯→ 2.79 cm

5, not followed by nonzero digit(s), and be increased by 1 4.635 kg ⎯→ 4.64 kg
preceded by an odd digit (because 3 is odd)

5, not followed by nonzero digit(s), and the stay the same 78.65 mL ⎯→ 78.6 mL
preceding significant digit is even (because 6 is even)

TABLE 6 Rules for Rounding Numbers



Addition or Subtraction with Significant Figures
Consider two mass measurements, 25.1 g and 2.03 g. The first measure-
ment, 25.1 g, has one digit to the right of the decimal point, in the tenths
place. There is no information on possible values for the hundredths
place. That place is simply blank and cannot be assumed to be zero. The
other measurement, 2.03 g, has two digits to the right of the decimal
point. It provides information up to and including the hundredths place.

Suppose you were asked to add the two measurements. Simply car-
rying out the addition would result in an answer of 25.1 g + 2.03 g =
27.13 g. That answer suggests there is certainty all the way to the 
hundredths place. However, that result is not justified because the hun-
dredths place in 25.1 g is completely unknown. The answer must be
adjusted to reflect the uncertainty in the numbers added.

When adding or subtracting decimals, the answer must have the same
number of digits to the right of the decimal point as there are in the mea-
surement having the fewest digits to the right of the decimal point.
Comparing the two values 25.1 g and 2.03 g, the measurement with the
fewest digits to the right of the decimal point is 25.1 g. It has only one such
digit. Following the rule, the answer must be rounded so that it has no
more than one digit to the right of the decimal point. The answer should
therefore be rounded to 27.1 g. When working with whole numbers, the
answer should be rounded so that the final significant digit is in the same
place as the leftmost uncertain digit. (For example, 5400 + 365 = 5800.)

Multiplication and Division 
with Significant Figures
Suppose you calculated the density of an object that has a mass of 3.05 g
and a volume of 8.47 mL. The following division on a calculator will give
a value of 0.360094451.

density = = = 0.360094451 g/mL

The answer must be rounded to the correct number of significant fig-
ures. The values of mass and volume used to obtain the answer have
only three significant figures each. The degree of certainty in the calcu-
lated result is not justified. For multiplication or division, the answer can
have no more significant figures than are in the measurement with the
fewest number of significant figures. In the calculation just described, the
answer, 0.360094451 g/mL, would be rounded to three significant fig-
ures to match the significant figures in 8.47 mL and 3.05 g. The answer
would thus be 0.360 g/mL.

3.05 g

8.47 mL

mass

volume
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SAMPLE PROBLEM  E

Carry out the following calculations. Express each answer to the correct number of 
significant figures.
a. 5.44 m � 2.6103 m
b. 2.4 g/mL � 15.82 mL

For more help, go to the Math Tutor at the end of Chapter 1.



Conversion Factors and Significant Figures
Earlier in this chapter, you learned how conversion factors are used to
change one unit to another.Such conversion factors are typically exact.That
is, there is no uncertainty in them. For example, there are exactly 100 cm in
a meter. If you were to use the conversion factor 100 cm/m to change meters
to centimeters, the 100 would not limit the degree of certainty in the answer.
Thus, 4.608 m could be converted to centimeters as follows.

4.608 m × = 460.8 cm

The answer still has four significant figures. Because the conversion fac-
tor is considered exact, the answer would not be rounded. Most exact
conversion factors are defined, rather than measured, quantities.
Counted numbers also produce conversion factors of unlimited preci-
sion. For example, if you counted that there are 10 test tubes for every
student, that would produce an exact conversion factor of 10 test tubes/
student. There is no uncertainty in that factor.

Scientific Notation

In scientific notation, numbers are written in the form M × 10n, where
the factor M is a number greater than or equal to 1 but less than 10 and
n is a whole number. For example, to write the quantity 65 000 km in

100 cm

m
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Go to go.hrw.com for
more practice problems
that ask you to calculate
using significant figures.

Keyword: HC6MEAX

Carry out each mathematical operation. Follow the rules in Table 5 and Table 6 for deter-
mining significant figures and for rounding.
a. The answer is rounded to 2.83 m, because for subtraction there should be two digits to

the right of the decimal point, to match 5.44 m.
b. The answer is rounded to 38 g, because for multiplication there should be two significant

figures in the answer, to match 2.4 g/mL.

SOLUTION

1. What is the sum of 2.099 g and 0.05681 g?

2. Calculate the quantity 87.3 cm − 1.655 cm.

3. Calculate the area of a rectangular crystal surface that measures
1.34 μm by 0.7488 μm. (Hint: Recall that area = length × width and
is measured in square units.)

4. Polycarbonate plastic has a density of 1.2 g/cm3. A photo frame is
constructed from two 3.0 mm sheets of polycarbonate. Each sheet
measures 28 cm by 22 cm. What is the mass of the photo frame?

Answers in Appendix EPRACTICE



scientific notation and show the first two digits as significant, you
would write the following.

6.5 × 104 km

Writing the M factor as 6.5 shows that there are exactly two significant
figures. If, instead, you intended the first three digits in 65 000 to be sig-
nificant, you would write 6.50 × 104 km. When numbers are written in
scientific notation, only the significant figures are shown.

Suppose you are expressing a very small quantity, such as the length
of a flu virus. In ordinary notation this length could be 0.000 12 mm.That
length can be expressed in scientific notation as follows.

0.000 12 mm = 1.2 × 10−4 mm

Move the decimal point four places to the 
right, and multiply the number by 10−4.

1. Determine M by moving the decimal point in the original number to
the left or the right so that only one nonzero digit remains to the left
of the decimal point.

2. Determine n by counting the number of places that you moved the
decimal point. If you moved it to the left, n is positive. If you moved
it to the right, n is negative.

Mathematical Operations 
Using Scientific Notation
1. Addition and subtraction These operations can be performed only if

the values have the same exponent (n factor). If they do not, adjust-
ments must be made to the values so that the exponents are equal.
Once the exponents are equal, the M factors can be added or sub-
tracted. The exponent of the answer can remain the same, or it may
then require adjustment if the M factor of the answer has more than
one digit to the left of the decimal point. Consider the example of the
addition of 4.2 × 104 kg and 7.9 × 103 kg.

We can make both exponents either 3 or 4. The following solutions
are possible.

4.2 × 104 kg
+0.79 × 104 kg

4.99 × 104 kg rounded to 5.0 × 104 kg

or

7.9 × 103 kg
+42 × 103 kg

49.9 × 103 kg = 4.99 × 104 kg rounded to 5.0 × 104 kg

Note that the units remain kg throughout.
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2. Multiplication The M factors are multiplied, and the exponents are
added algebraically.

Consider the multiplication of 5.23 × 106 μm by 7.1 × 10−2 μm.

(5.23 × 106 μm)(7.1 × 10−2 μm) = (5.23 × 7.1)(106 × 10−2)
= 37.133 × 104 μm2 (adjust to two 

significant digits)
= 3.7 × 105 μm2

Note that when length measurements are multiplied, the result is
area. The unit is now μm2.

3. Division The M factors are divided, and the exponent of the
denominator is subtracted from that of the numerator. The calcula-
tor keystrokes for this problem are shown in Figure 10.

= × 107− 4 g/mol

= 0.6716049383 × 103 (adjust to two significant figures)
= 6.7 × 102 g/mol

Note that the unit for the answer is the ratio of grams to moles.

Using Sample Problems

Learning to analyze and solve such problems requires practice and a
logical approach. In this section, you will review a process that can help
you analyze problems effectively. Most Sample Problems in this book
are organized by four basic steps to guide your thinking in how to work
out the solution to a problem.

5.44

8.1

5.44 × 107 g

8.1 × 104 mol
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FIGURE  10 When you use a sci-
entific calculator to work problems
in scientific notation, don’t forget to
express the value on the display to
the correct number of significant fig-
ures and show the units when you
write the final answer.



Analyze
The first step in solving a quantitative word problem is to read the prob-
lem carefully at least twice and to analyze the information in it. Note any
important descriptive terms that clarify or add meaning to the problem.
Identify and list the data given in the problem. Also identify the
unknown—the quantity you are asked to find.

Plan
The second step is to develop a plan for solving the problem. The plan
should show how the information given is to be used to find the
unknown. In the process, reread the problem to make sure you have
gathered all the necessary information. It is often helpful to draw a pic-
ture that represents the problem. For example, if you were asked to
determine the volume of a crystal given its dimensions, you could draw
a representation of the crystal and label the dimensions. This drawing
would help you visualize the problem.

Decide which conversion factors, mathematical formulas, or chemi-
cal principles you will need to solve the problem. Your plan might 
suggest a single calculation or a series of them involving different con-
version factors. Once you understand how you need to proceed, you
may wish to sketch out the route you will take, using arrows to point the
way from one stage of the solution to the next. Sometimes you will need
data that are not actually part of the problem statement. For instance,
you’ll often use data from the periodic table.

Compute
The third step involves substituting the data and necessary conversion
factors into the plan you have developed. At this stage you calculate the
answer, cancel units, and round the result to the correct number of sig-
nificant figures. It is very important to have a plan worked out in step 2
before you start using the calculator. All too often, students start multi-
plying or dividing values given in the problem before they really under-
stand what they need to do to get an answer.

Evaluate
Examine your answer to determine whether it is reasonable. Use the fol-
lowing methods, when appropriate, to carry out the evaluation.
1. Check to see that the units are correct. If they are not, look over the

setup. Are the conversion factors correct?
2. Make an estimate of the expected answer. Use simpler, rounded

numbers to do so. Compare the estimate with your actual result. The
two should be similar.

3. Check the order of magnitude in your answer. Does it seem reasonable
compared with the values given in the problem? If you calculated the
density of vegetable oil and got a value of 54.9 g/mL, you should know
that something is wrong. Oil floats on water; therefore, its density is less
than water, so the value obtained should be less than 1.0 g/mL.

4. Be sure that the answer given for any problem is expressed using the
correct number of significant figures.
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Look over the following quantitative Sample Problem. Notice how
the four-step approach is used, and then apply the approach yourself in
solving the practice problems that follow.
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Go to go.hrw.com for
more practice problems
that ask you to calculate
using scientific notation.

Keyword: HC6MEAX

Given: mass = 3.057 kg, density = 2.70 g/cm3

Unknown: volume of aluminum

The density unit in the problem is g/cm3, and the mass given in the problem is expressed in
kg. Therefore, in addition to using the density equation, you will need a conversion factor
representing the relationship between grams and kilograms.

1000 g = 1 kg

Also, rearrange the density equation to solve for volume.

density = or D =

V =

V = × = 1132.222 . . . cm3 (calculator answer)

The answer should be rounded to three significant figures.

V = 1.13 × 103 cm3

The unit of volume, cm3, is correct. An order-of-magnitude estimate would put the answer
at over 1000 cm3.

× 1000

The correct number of significant figures is three, which matches that in 2.70 g/cm3.

3

2

1000 g

kg

3.057 kg

2.70 g/cm3

m

D

m

V

mass

volume

SOLUTION

1 ANALYZE

2 PLAN

3 COMPUTE

4 EVALUATE

SAMPLE PROBLEM  F

1. What is the volume, in milliliters, of a sample of helium that has a
mass of 1.73 × 10−3 g, given that the density is 0.178 47 g/L?

2. What is the density of a piece of metal that has a mass of 
6.25 × 105 g and is 92.5 cm × 47.3 cm × 85.4 cm?

3. How many millimeters are there in 5.12 × 105 kilometers?

4. A clock gains 0.020 second per minute. How many seconds will the
clock gain in exactly six months, assuming exactly 30 days per month?

Answers in Appendix E

Calculate the volume of a sample of aluminum that has a mass of 3.057 kg. The density of aluminum is
2.70 g/cm3.

PRACTICE



Direct Proportions

Two quantities are directly proportional to each other if dividing one by
the other gives a constant value. For example, if the masses and volumes
of different samples of aluminum are measured, the masses and vol-
umes will be directly proportional to each other. As the masses of the
samples increase, their volumes increase by the same factor, as you can
see from the data in Table 7. Doubling the mass doubles the volume.
Halving the mass halves the volume.

When two variables, x and y, are directly proportional to each other,
the relationship can be expressed as y ∝ x, which is read as “y is pro-
portional to x.” The general equation for a directly proportional rela-
tionship between the two variables can also be written as follows.

= k

The value of k is a constant called the proportionality constant. Written
in this form, the equation expresses an important fact about direct pro-
portion: the ratio between the variables remains constant. Note that
using the mass and volume values in Table 7 gives a mass-volume ratio
that is constant (neglecting measurement error). The equation can be
rearranged into the following form.

y = kx

The equation y = kx may look familiar to you. It is the equation for a
special case of a straight line. If two variables related in this way are
graphed versus one another, a straight line, or linear plot that passes
through the origin (0,0), results. The data for aluminum from Table 7 are
graphed in Figure 11. The mass and volume of a pure substance are
directly proportional to each other. Consider mass to be y and volume to
be x. The constant ratio, k, for the two variables is density. The slope of
the line reflects the constant density, or mass-volume ratio, of aluminum,

y

x
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Mass (g) Volume (cm3) (g/cm3)

54.7 20.1 2.72

65.7 24.4 2.69

83.5 30.9 2.70

96.3 35.8 2.69

105.7 39.1 2.70

m

V

TABLE 7 Mass-Volume Data 
for Aluminum at 20°C
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Mass Vs. Volume of Aluminum

FIGURE  11 The graph of mass
versus volume shows a relationship
of direct proportion. Notice that the
line is extrapolated to pass through
the origin.



which is 2.70 g/cm3 at 20°C. Notice also that the plotted line passes
through the origin.All directly proportional relationships produce linear
graphs that pass through the origin.

Inverse Proportions

Two quantities are inversely proportional to each other if their product is
constant. An example of an inversely proportional relationship is that
between speed of travel and the time required to cover a fixed distance.
The greater the speed, the less time that is needed to go a certain fixed
distance. Doubling the speed cuts the required time in half. Halving the
speed doubles the required time.

When two variables, x and y, are inversely proportional to each other,
the relationship can be expressed as follows.

y ∝

This is read “y is proportional to 1 divided by x.” The general equation
for an inversely proportional relationship between the two variables
can be written in the following form.

xy = k

In the equation, k is the proportionality constant. If x increases, y must
decrease by the same factor to keep the product constant.

A graph of variables that are inversely proportional produces a curve
called a hyperbola. Such a graph is illustrated in Figure 12. When the
temperature of the gas is kept constant, the volume (V) of the gas sam-
ple decreases as the pressure (P) increases. Look at the data shown in
Table 8. Note that P × V gives a reasonably constant value. The graph
of this data is shown in Figure 12.

1

x
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Pressure (kPa) Volume (cm3) P � V

100 500 50 000

150 333 50 000

200 250 50 000

250 200 50 000

300 166 49 800

350 143 50 100

400 125 50 000

450 110 49 500

TABLE 8 Pressure-Volume Data for Nitrogen
at Constant Temperature
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Pressure (kPa)
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Volume Vs. Pressure of Nitrogen FIGURE  12 The graph of 
volume versus pressure shows an
inversely proportional relationship.
Note the difference between the
shape of this graph and that of the
graph in Figure 11.

1. The density of copper is listed as 8.94 g/cm3. Two
students each make three density determinations
of samples of the substance. Student A’s results
are 7.3 g/mL, 9.4 g/mL, and 8.3 g/mL. Student B’s
results are 8.4 g/cm3, 8.8 g/cm3, and 8.0 g/cm3.
Compare the two sets of results in terms of preci-
sion and accuracy.

2. Determine the number of significant figures.

a. 6.002 cm d. 7000 kg

b. 0.0020 m e. 7000. kg

c. 10.0500 g

3. Round 2.6765 to two significant figures.

4. Carry out the following calculations.

a. 52.13 g + 1.7502 g

b. 12 m × 6.41 m

c.

5. Perform the following operations. Express each
answer in scientific notation.

a. (1.54 × 10−2 g) + (2.86 × 10−1 g)

b. (7.023 × 109 g) − (6.62 × 107 g)

c. (8.99 × 10−4 m) × (3.57 × 104 m)

d.

6. Write the following numbers in scientific notation.

a. 560 000 c. 0.000 4120

b. 33 400

7. A student measures the mass of a beaker filled
with corn oil. The mass reading averages
215.6 g. The mass of the beaker is 110.4 g.

a. What is the mass of the corn oil?

b. What is the density of the corn oil if its vol-
ume is 114 cm3?

8. Calculate the mass of gold that occupies 5.0 ×
10−3 cm3. The density of gold is 19.3 g/cm3.

9. What is the difference between a graph repre-
senting data that are directly proportional and a
graph of data that are inversely proportional?

Critical Thinking

10. APPLYING CONCEPTS The mass of a liquid is
11.50 g and its volume is 9.03 mL. How many 
significant figures should its density value have?
Explain the reason for your answer.

2.17 × 10−3 g

5.022 × 104 mL

16.25 g

5.1442 mL

SECTION REVIEW
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• The scientific method is a logical approach to solving problems
that lend themselves to investigation.

• A hypothesis is a testable statement that serves as the basis for
predictions and further experiments.

• A theory is a broad generalization that explains a body of
known facts or phenomena.

Vocabulary

Scientific Method

• The result of nearly every measurement is a number and a unit.
• The SI system of measurement is used in science. It has seven

base units: the meter (length), kilogram (mass), second (time),
kelvin (temperature), mole (amount of substance), ampere
(electric current), and candela (luminous intensity).

• Weight is a measure of the gravitational pull on matter.
• Derived SI units include the square meter (area) and the cubic

meter (volume).
• Density is the ratio of mass to volume.
• Conversion factors are used to convert from one unit to another.

quantity
SI
weight
derived unit
volume
density
conversion factor
dimensional analysis

scientific method
system
hypothesis
model
theory

Vocabulary

Units of Measurement

• Accuracy refers to the closeness of a measurement to the cor-
rect or accepted value. Precision refers to the closeness of val-
ues for a set of measurements.

• Percentage error is the difference between the experimental
and the accepted value that is divided by the accepted value
and then multiplied by 100.

• The significant figures in a number consist of all digits known
with certainty plus one final digit, which is uncertain.

• After addition or subtraction, the answer should be rounded so
that it has no more digits to the right of the decimal point than
there are in the measurement that has the smallest number of
digits to the right of the decimal point. After multiplication or
division, the answer should be rounded so that it has no more
significant figures than there are in the measurement that has
the fewest number of significant figures.

• Exact conversion factors are completely certain and do not
limit the number of digits in a calculation.

• A number written in scientific notation is of the form M × 10n,
in which M is greater than or equal to 1 but less than 10 and n
is an integer.

• Two quantities are directly proportional to each other if divid-
ing one by the other yields a constant value. Two quantities are
inversely proportional to each other if their product has a con-
stant value.

accuracy
precision
percentage error
significant figures
scientific notation
directly proportional
inversely proportional

Vocabulary

Using Scientific Measurements


