#### **NEWTONIAN MECHANICS**

# a = acceleration $v = v_0 + at$ F = force $x = x_0 + v_0 t + \frac{1}{2}at^2$ f = frequency h = height J = impulse K = kinetic energy $\Sigma \mathbf{F} = \mathbf{F}_{net} = m\mathbf{a}$ k = spring constant $\ell = \text{ length}$ $F_{fric} \le \mu N$ m = mass N = normal forceF = forceN = normal force $a_c = \frac{v^2}{r}$ P = powerp = momentumr = radius or distance $\tau = rF\sin\,\theta$ T = period $\mathbf{p} = m\mathbf{v}$ t = timeU = potential energy $\mathbf{J} = \mathbf{F} \Delta t = \Delta \mathbf{p}$ v = velocity or speed $K = \frac{1}{2}mv^{2}$ $\Delta U_{g} = mgh$ $W = F\Delta r\cos\theta$ W = work done on a system x = position $\mu$ = coefficient of friction $\theta$ = angle $\tau$ = torque $P_{avg} = \frac{W}{\Delta t}$ $P = F v \cos \theta$ $\mathbf{F}_{s} = -k\mathbf{x}$ $U_s = \frac{1}{2}kx^2$ $T_s = 2\pi \sqrt{\frac{m}{k}}$ $T_p = 2\pi \sqrt{\frac{\ell}{g}}$ $T = \frac{1}{f}$ $F_G = -\frac{Gm_1m_2}{r^2}$ $U_G = -\frac{Gm_1m_2}{r}$ www.MrLiddell.com

| ELECTRICITY                                                        | AND MAGNETISM                                   |
|--------------------------------------------------------------------|-------------------------------------------------|
| $F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$                 | A = area<br>B = magnetic field                  |
| F                                                                  | C = capacitance                                 |
| $\mathbf{E} = \frac{\mathbf{r}}{a}$                                | d = distance                                    |
| 9                                                                  | E = electric field                              |
| $U_{E} = qV = \frac{1}{1} \frac{q_{1}q_{2}}{1}$                    | $\boldsymbol{\mathcal{E}} = \operatorname{emf}$ |
| $L = 4\pi\epsilon_0 r$                                             | F = force                                       |
| E - V                                                              | I = current                                     |
| $E_{avg} = -\frac{1}{d}$                                           | $\ell = \text{length}$                          |
| $1  \mathbf{\nabla} \ a_i$                                         | P = power                                       |
| $V = \frac{1}{4\pi\epsilon_0} \sum \frac{\eta}{r_0}$               | Q = charge                                      |
|                                                                    | q = point charge                                |
| $C = \frac{Q}{Q}$                                                  | R = resistance                                  |
| C = V                                                              | r = distance                                    |
| $\epsilon_0 A$                                                     | t = time                                        |
| $C = \frac{0}{d}$                                                  | U = potential (stored) energy                   |
| 1 1 2                                                              | V = electric potential or                       |
| $U_c = \frac{1}{2}QV = \frac{1}{2}CV^2$                            | potential difference                            |
| 2 2                                                                | v = velocity or speed                           |
| $I_{avg} = \frac{\Delta Q}{\Delta t}$                              | $\rho$ = resistivity                            |
| $\Delta t$                                                         | $\theta$ = angle                                |
| $R = \frac{\rho\ell}{A}$                                           | $\phi_m =$ magnetic flux                        |
| V = IR                                                             |                                                 |
| P = IV                                                             |                                                 |
| $C_p = \sum_i C_i$                                                 |                                                 |
| $\frac{1}{C_s} = \sum_i \frac{1}{C_i}$                             |                                                 |
| $R_s = \sum_i R_i$                                                 |                                                 |
| $\frac{1}{R_p} = \sum_i \frac{1}{R_i}$                             |                                                 |
| $F_B = q \upsilon B \sin \theta$                                   |                                                 |
| $F_B = BI\ell\sin\theta$                                           |                                                 |
| $B = \frac{\mu_0}{2\pi} \frac{I}{r}$                               |                                                 |
| $\phi_m = BA\cos\theta$                                            | <u> </u>                                        |
| $\boldsymbol{\varepsilon}_{avg} = -\frac{\Delta \phi_m}{\Delta t}$ | PHYSICS                                         |
| $\boldsymbol{\varepsilon} = B\ell \boldsymbol{v}$                  | 11                                              |

## **TITAN TABLE OF EQUATIONS**

WAVES AND OPTICS

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$ 

 $\sin \theta_C = \frac{n_2}{n_1}$ 

 $\frac{1}{s_i} + \frac{1}{s_0} = \frac{1}{f}$ 

 $M = \frac{h_i}{h_0} = -\frac{s_i}{s_0}$  $f = \frac{R}{2}$ 

 $d\sin\theta = m\lambda$ 

 $x_m \approx \frac{m\lambda L}{d}$ 

Rectangle

Triangle

Circle

A = bh

 $A = \frac{1}{2}bh$ 

d = separation= frequency or

h = height

L = distance

R = radius of

s = distancev = speedx = position $\lambda$  = wavelength

 $\theta$  = angle

A = area

b = base

h = height

 $\ell = \text{length}$ 

w = width

r = radius

V = volume

C = circumference

S = surface area

GEOMETRY AND TRIGONOMETRY

M = magnification m = an integer n = index of

focal length

refraction

curvature

f

 $v = f\lambda$ 

 $n = \frac{c}{v}$ 

### FLUID MECHANICS AND THERMAL PHYSICS

| $P = P_0 + \rho g h$                                 | A = area                                    |
|------------------------------------------------------|---------------------------------------------|
|                                                      | e = efficiency                              |
| $F_{buoy} = \rho V g$                                | F = force                                   |
|                                                      | h = depth                                   |
| $A_1 v_1 = A_2 v_2$                                  | H = rate of heat                            |
| 1                                                    | k = thermal con                             |
| $P + \rho gy + \frac{1}{2}\rho v^2 = \text{ const.}$ | $K_{avg}$ = average kinet                   |
| $\Delta \ell = \alpha \ell_{\perp} \Delta T$         | $\ell = \text{length}$                      |
|                                                      | L = thickness                               |
| $kA \Delta T$                                        | M = molar mass                              |
| H =                                                  | n = number of                               |
|                                                      | N = number of                               |
| $P = \frac{F}{A}$                                    | P = pressure                                |
| A                                                    | Q = heat transfe                            |
| $PV = nRT = Nk_BT$                                   | system                                      |
|                                                      | T = temperature                             |
| $K = \frac{3}{2}k_{\rm p}T$                          | U = internal energy                         |
| 1 <sup>avg</sup> 2 <sup>wB</sup>                     | v = volume                                  |
| $3RT = 3k_BT$                                        | v = velocity or                             |
| $\int U_{rms} = \sqrt{M} = \sqrt{-\mu}$              | $v_{rms} = $ root-mea                       |
|                                                      | velocit                                     |
| $W = -P\Delta V$                                     | W = work done                               |
| $\Delta U = Q + W$                                   | y = neight<br>$\alpha = \text{coefficient}$ |
|                                                      | $\alpha = \text{coefficient}$               |
| e = W                                                | $\mu = mass of mc$                          |
| $ Q_H $                                              | a = donsity                                 |
|                                                      | p – density                                 |
| $e_c = \frac{I_H - I_C}{T}$                          |                                             |
|                                                      |                                             |
|                                                      |                                             |
|                                                      |                                             |
| TATOMIC AND NUCLEAR                                  | PHYSICS                                     |

$$K_{\text{max}} = hf - \phi$$

$$\lambda = \frac{h}{p}$$

$$\Delta E = (\Delta m)c^{2}$$
**STAHOUITZ**

E = hf = pc

| A = area                         |
|----------------------------------|
| e = efficiency                   |
| F = force                        |
| h = depth                        |
| H = rate of heat transfer        |
| k = thermal conductivity         |
| $K_{avg}$ = average molecular    |
| kinetic energy                   |
| $\ell = \text{length}$           |
| L = thickness                    |
| M = molar mass                   |
| n = number of moles              |
| N = number of molecules          |
| P = pressure                     |
| Q = heat transferred to a        |
| system                           |
| T = temperature                  |
| U = internal energy              |
| V = volume                       |
| v = velocity or speed            |
| $v_{rms}$ = root-mean-square     |
| velocity                         |
| W = work done on a system        |
| y = height                       |
| $\alpha$ = coefficient of linear |
| expansion                        |
| $\mu = mass of molecule$         |
| $\rho = \text{density}$          |
|                                  |
|                                  |
|                                  |
|                                  |
| IYSICS                           |
| E = energy                       |
| f = frequency                    |
| K = kinetic energy               |
|                                  |

$$m = mass$$
  
 $p = momentum$ 

f

$$\lambda =$$
wavelength  
 $\phi =$ work function

$$A = \pi r^{2}$$

$$C = 2\pi r$$
Parallelepiped
$$V = \ell wh$$
Cylinder
$$V = \pi r^{2} \ell$$

$$V = \pi r^{2} \ell$$
$$S = 2\pi r \ell + 2\pi r^{2}$$

2.

$$V = \frac{4}{3}\pi r^3$$
$$S = 4\pi r^2$$

Right Triangle 
$$a^2 + b^2 = c^2$$

$$a' + b' =$$
  
 $\sin \theta = \frac{a}{c}$ 

 $\cos\theta = \frac{b}{c}$ 

 $\tan \theta = \frac{a}{b}$ 



www.MrLiddell.com