

TITAN TABLE OF EQUATIONS

FLUID MECHANICS AND THERMAL PHYSICS

$$
\begin{aligned}
& P=P_{0}+\rho g h \\
& F_{\text {buoy }}=\rho V g \\
& A_{1} v_{1}=A_{2} v_{2} \\
& P+\rho g y+\frac{1}{2} \rho v^{2}=\text { const. } \\
& \Delta \ell=\alpha \ell_{0} \Delta T \\
& H=\frac{k A \Delta T}{L} \\
& P=\frac{F}{A} \\
& P V=n R T=N k_{B} T \\
& K_{\text {avg }}=\frac{3}{2} k_{B} T \\
& v_{r m s}=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3 k_{B} T}{\mu}} \\
& W=-P \Delta V \\
& \Delta U=Q+W \\
& e=\left|\frac{W}{Q_{H}}\right| \\
& e_{c}=\frac{T_{H}-T_{C}}{T_{H}} \\
& A=\text { area } \\
& e=\text { efficiency } \\
& F=\text { force } \\
& h=\text { depth } \\
& H=\text { rate of heat transfer } \\
& k=\text { thermal conductivity } \\
& K_{\text {avg }}=\text { average molecular } \\
& \text { kinetic energy } \\
& \ell=\text { length } \\
& L=\text { thickness } \\
& M=\text { molar mass } \\
& n=\text { number of moles } \\
& N=\text { number of molecules } \\
& P=\text { pressure } \\
& Q=\text { heat transferred to a } \\
& \text { system } \\
& T=\text { temperature } \\
& U=\text { internal energy } \\
& V=\text { volume } \\
& v=\text { velocity or speed } \\
& v_{r m s}=\text { root-mean-square } \\
& \text { velocity } \\
& W=\text { work done on a system } \\
& y=\text { height } \\
& \alpha=\text { coefficient of linear } \\
& \text { expansion } \\
& \mu=\text { mass of molecule } \\
& \rho=\text { density }
\end{aligned}
$$

ATOMIC AND NUCLEAR PHYSICS

$E=h f=p c$
$E=$ energy
$K_{\max }=h f-\phi$
$f=$ frequency
$K=$ kinetic energy
$m=$ mass
$p=$ momentum
$\lambda=$ wavelength
$\phi=$ work function

WAVES AND OPTICS
$v=f \lambda \quad d=$ separation
$n=\frac{c}{v} \quad f=$ frequency or
focal length
$h=$ height
$L=$ distance
$M=$ magnification
$m=$ an integer
$n=$ index of
refraction
$R=$ radius of
curvature
$M=\frac{h_{i}}{h_{0}}=-\frac{s_{i}}{s_{0}}$
$s=$ distance
$v=$ speed
$f=\frac{R}{2} \quad x=$ position
$\lambda=$ wavelength
$\theta=$ angle
$d \sin \theta=m \lambda$
$x_{m} \approx \frac{m \lambda L}{d}$

GEOMETRY AND TRIGONOMETRY

Rectangle
$A=$ area

$$
A=b h
$$

Triangle

$$
A=\frac{1}{2} b h
$$

Circle

$$
\begin{gathered}
A=\pi r^{2} \\
C=2 \pi r \\
\text { Parallelepiped } \\
V=\ell w h
\end{gathered}
$$

Cylinder

$$
\begin{aligned}
& V=\pi r^{2} \ell \\
& S=2 \pi r \ell+2 \pi r^{2}
\end{aligned}
$$

Sphere

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& S=4 \pi r^{2}
\end{aligned}
$$

Right Triangle
$a^{2}+b^{2}=c^{2}$
$\sin \theta=\frac{a}{c}$
$\cos \theta=\frac{b}{c}$

$\tan \theta=\frac{a}{b}$
www.MrLiddell.com

